Notes for today
» Reading: Today starting Ch. 3.

= Note no exam next week. (Originally 3 midterm exams in
Howdy schedule).

= We have a midterm Oct. 29. More details on this later in the
term.



Formal structure of the thermodynamics relationships:

U(S,V,N,N,..)

e rdistinct particle types makes r+2 parameters.

e We can change coordinates if desired; e.g. T, P, N also
serves to specify 1-component system in large-N limit.
e We also obtain r+2 egns. of state (intensive
quantities.):

T=&)w =@ 4= Gy

e Having all r+2 eqns. of state completely determines
the function U(S,V,N., N,...) [orS(U,V,Nq N,...) ];
this will always work.

e However one more relation among the intensive
parameters (Gibbs-Duhem) means actually r+1 degrees
of freedom to determine fundamental equation.



Formal structure of the thermodynamics relationships:

U(S,V,Ny, N,..) vs dU = TdS — PdV + udN:

AU(S,V,Ny, N, ...) = U(AS, AV, AN, AN, ...)

d(AU)
V)

also U =



Formal structure of the thermodynamics relationships:

U(S,V,Ny, N,..) vs dU = TdS — PdV + udN:

AU(S,V,Ny, N, ...) = U(AS, AV, AN, AN, ...)

d(AU)
V)

L U=TS— PV +uN

Euler equation, distinct from first law; general

property comes from extensivity behavior.

* From this result, establish that r+2 equations
completely determine thermal properties.

« Similar S(U,V,N, N, ...) relation, see text.

also U =




Formal structure of the thermodynamics relationships:

U=TS — PV + uN
Example from HWA1:

S = aV1/4y3/% (Blackbody radiation)
Find T & P relationships?



Formal structure of the thermodynamics relationships:

U=TS— PV +uN

Means:  dU =TdS — PdV + udN

And:  dU =TdS + SdT — PdV — VdP + udN + Ndu



Formal structure of the thermodynamics relationships:

U=TS— PV +uN

Means:  dU =TdS — PdV + udN

And:  dU =TdS + SdT — PdV — VdP + udN + Ndu

- =

SAT — VdP + Ndu = 0

Gibbs-Duhem relation  orsd7 —vdp + ¥ N; du; = 0

r+1 degrees of freedom can see



Formal structure of the thermodynamics relationships:

SAT — VdP + 2 N;du; =0 Gibbs-Duhem relation

e Can integrate to find e.g. u in terms of other parameters.
Thus 2 (or r+1) equations of state are sufficient.

e Nice trick whenr=1: per-atom (or molar) relations.



Formal structure of the thermodynamics relationships:

SAT — VdP + 2 N;du; =0 Gibbs-Duhem relation

e Can integrate to find e.g. u in terms of other parameters.
Thus 2 (or r+1) equations of state are sufficient.

e Nice trick whenr=1: per-atom (or molar) relations.

U=U(S,V,N)
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Formal structure of the thermodynamics relationships:

SAT — VdP + 2 N;du; =0 Gibbs-Duhem relation

e Can integrate to find e.g. u in terms of other parameters.
Thus 2 (or r+1) equations of state are sufficient.

e Nice trick whenr=1: per-atom (or molar) relations.

u =

2| <

=U(s,v) — du =Tds — Pdv

similar result for dS



Formal structure of the thermodynamics relationships:

SAT — VdP + 2 N;du; =0 Gibbs-Duhem relation

e Can integrate to find e.g. u in terms of other parameters.
Thus 2 (or r+1) equations of state are sufficient.

e Nice trick whenr=1: per-atom (or molar) relations.

2| <

u=—=U(,v) — du=Tds— Pdv

similar result for dS

PV = NkpT, U = >NkpT; find s?



Blackbody Radiation

* Cavity with perfect emissivity
walls

* Measure output through tiny
non-perturbing aperture.

X

e 4
S
Z o\

N

S
Cavity mode, perfect

conducting walls
Each normal mode

equivalent to “simple
harmonic oscillator”




Blackbody radiation, thermodynamic solution

 Experimental quantities: P I'=o T‘; StEf’”'b;Ol{lfzma””
U — bVT4_ mntensity reiation
P=U/@3V)

e Then can easily solve for S = %bl/ ‘ysrayt/e,

using methods we have seen.

* Alsonote, S = i—z simpler form.

* Note N is formally zero (or can treat N as
number of photons; u = 0 since U independent

of N).



Absorbers& emitters in walls
maintain thermal equilibrium
EM standing waves equivalent to o |
set of harmonic oscillators: \/

Ny A

N
Cavity mode, perfect conducting :
walls, electric field solutions /

Eu(z,y.2) = ES cosinwa/L,) sinfmmy/L,) sin[lwz/L.]

Ey(z,y.2z) = E(%y} sinfnwx/L,| coslmmy/L,| sin|llmz/L,] See E&M book

B lz.u.2) = ];éf) sinfnwa/L,| sinjmwy/L,| cosllmz/L,]

3 pre-factors must solve Maxwell equations; 2 solutions for
cach n, m, [ =TE and TM standing waves.
Possible modes fill up one octant in “wave-number space™

(except some modes not allowed: 100, etc.)




Counting photon states: recall harmonic oscillator result
(3N independent 1D oscillators)

U=N7+Ne,8hw_1




Counting photon states: recall harmonic oscillator result
(3N independent 1D oscillators)

U= N hw N hw
=N T e 1
Same as Bose-Einstein Ao
t1 b =
occupation number P 1 ha@

(photon statistics)



Photons: Quantized cavity modes.

1 p— —
(n) = z (ehei — 1) & = hw; = hk;c

all modes “energy per photon”

J
«2 polarizations,/ v . o
for each cavity mode Bose distribution with photon statistics

N goes to infinity

U = hw; * Throwing away infinite
N ePhwi _ 1) amount of zero-point
all modes energy!




State counting:

* Start with cavity modes in a box with perfectly conducting

sides, dimensions L. Cavity mode

Counting: one

TT
ﬁ\ E, < cos (nx —x) sin (ny y) sin ("z ZZ) €1C.  TM + one TE
E-field
per k-vector

_T Ly = (2)3
L kL “Phase space volume” /3/8

Octant of sphere;
but with 8X state density.
(3D sphere radius will go to infinity)



