Notes:

Homework : Set #9 due Thursday not Wednesday. Also note,
more on the density of states is included in today’s lecture.

Exam: Results with bonus points, new average = 60.

- | will post solutions later today

- Also | will post adjusted grades on Canvas. (Updated problems
are stapled in your exam but | didn’t write the adjusted score
there, | have the results in a spreadsheet with my bonus
algorithm.)

- | had points reversed, sorry, the point totals were 5, 21, 24,
26, 24. | also gave a few more bonus points: 67% of the extra
points not 60%).
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Exam: Results with bonus points, new average = 60.
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exam 1

Homework: Current average is 72. You can also help your cause by
volunteering to present one of the HW problems.



Density of states: for summations involving only w (or E).

phonons
U = z hw; \ 3700( #k states )x hw
e (ePhwi — 1) o \in(w,w+dw))  (efho — 1)
“hwD(w)dw
0 (ePhro —1)

1) Find # states inside a sphere (octant) in & space: N (k).
e This includes polarizations.

« Anisotropic situations: replace sphere by constant-w surface
2) Convert to w units: N(w).

3) D(w) is the derivative, D(w)dw =
total # modes in (w, w + dw).
( AN This

dN(w)

dw, equal to

defines density of states

3 1mil for D(E)).

Ak =% SV, = (%) for octant: (similar procedure for D (E))
3 . _ 302V
_ (ZTn) for complete sphere Result for phonons: D(w) = —y

traveling-waves




Phonons:

- 1
— — —-pnhw; —
2= || =[] petmo= || 1=

all modes all modes n=0 all modes
(not same as all (Z;we saw
atoms; factor last time)
of 3 here)

0 h(!)i
W =M@= ) T

all modes

use here for sum over w.

3w2V

2m2c3

D(w) =



Phonons:

continuum limit
_ hw; Wmax hwD(w)dw  rwp  3Vhw3dw
<U> — Zall modes (eﬁhwi_l) = f() (e,[?ha)_l) - f() ancs(eﬁha)_l)




Phonons:

hwij

<U> — Zall modes (eﬁh“)i—l)

(U) =

_ Vm?(kT)*

10(Ac)3

Debye Theory:
* Modes cut off uniformly in all directions: maximum k = kj on sphere.

* Assume uniform speed of sound, doesn’t change at high frequencies.
* Disregard anisotropy, e.g. for layered crystals, etc.

continuum limit

N fwmax hwD(w)dw wa 3VAw3dw

0 (eBrw—1) Jo  2m2c3(eBhw—1)

low T only
and note, ¢ = speed of sound (not light)




Phonons:

continuum limit

_ hw; Wmax hwD(w)dw  rwp  3Vhw3dw
<U> — Zall modes (eﬁhwi_l) = f() (eﬁha)_l) o f() ancs(eﬁha)_l)

Uy — Vr?(kT)* low T only
(U) = 10(fxc)3 and note, ¢ = speed of sound (not light)

Debye Theory:
* Modes cut off uniformly in all directions: maximum k = kj on sphere.

* Assume uniform speed of sound, doesn’t change at high frequencies.
* Disregard anisotropy, e.g. for layered crystals, etc.

N\1/3 : .
Result: wp = (6n2 ;) need this for solutions at general 7




Phonons mode counting:

Debye Theory (“Debye approximation”):

* Modes cut off uniformly in all directions: maximum k = kj, on sphere.

* Assume constant speed of sound, doesn’t change at high frequencies.

* Disregard anisotropy, e.g. for layered crystals, etc.

* Even in simple crystal geometries (cubic), cutoff is really a polyhedron in
k space (this is the “Brillouin zone™’; Debye approximation neglects this.

ZA
1/

kp wp = kpc Debye frequency

®p = hwp /kgDebye temperature

/ | R . Result:
= * Polyhedron with 3N modes;

Sphere same volume, also 3N modes. Wp =C (67‘[2

vV

N)1/3




Phonons:  combining,

continuum limit

() = z hw; \ J“‘)D 3Vhw3dw
B (ePhwi — 1) o 2m2c3(efhw —1)

all modes

£y — V2 (kT)* low T limit (exact result)
(E) = 10(#c)3 c = speed of sound (or directional average)

3 hw he (6m2N\">
L' Low-T Cy =15—2N7T4k3 (@iD) Op = kBDsz< ” )

. . Debye Temperature
Classical limit

higher 7': can solve integral numerically.
bicbie Generally good agreement, Debye theory

sl 0® T nwmeeet Binstein commonly used to model thermal behavior
Tl of solids.

o Copper O, =315 K
¥ Lead ©, = 88 K

s s 013 a ofe = ofg = 1?2 = 11.5 Diamond GD = 1860 K

T/T,
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Debye approximation: Commonly used as measure of phonon
behavior (even when “real” behavior can be obtained)
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Rev. B 85, 214304
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Density of states:
( #k states
in(w,w+ dw)
1) Find # states inside a sphere (octant) in &k space: N (k).

* include 3 polarizations.
2) Convert to w units: N(w).

3) D(w) is the derivative, D (w)dw =
total # modes in (w, w + dw).

) = D(w) recall for phonons:

dN(w)

dw, equal to

other 1) Find # states inside a sphere (octant) in k space: N (k). (same)
svstems: * include 2 spins. _ 2k
’ 2) Convert to € units: N(g). (&=
Ideal gas of B e 1
electrons 3) D(e) is the derivative, D(g)de = g, equal to

total # modes in (g, € + d¢).

T

3
Ak = > V, = (%) for octant;

2T 3 .
= (T) for complete sphere traveling-waves




Ideal gas of 1) Find # states inside a sphere (octant) in & space: N (k). (same)
electrons « include 2 spins. B2k

2) Convert to € units: N(g).“ (&=
3) D(e) is the derivative, D(g)de = dl:;ig) de, equal to

total # modes in (g, € + d¢).

3/2
Result: D(&) = (427:2) (thl) NG

* Similar procedure for relativistic gas (HW)

* For the ionization HW problem 6, previously I didn’t include
spin in the multiplicity of states. Using the result above you
should arrive within a factor of 2 vs. the prior result.

* C(Classical partition function can be calculated this way. Last
week we did so with momentum integration, this is easier.

* Ch. does not give D (&) with energy units, this appears later
chapter 18.




Photons vs. Phonons recall:

Electric field t

Magnetic field

Photons:

Cavity modes

2 polarizations

w = kc.

Extend to w — oo,

e ~iKT=Wt free space solution
Bose statistics (u = 0).

Energies quantized, Aw(n + %).

Speed of light: ¢

Phonons:

elastic (standing) waves

3 polarizations

w = kc,exact for low k
Bounded: N values of k.

g ik-F-wt [or sin(l_é - 7) sin(wt)]
Bose statistics (u = 0).

Energies quantized, Aw(n + %).
Speed of sound: ¢



Photons vs. Phonons recall:

Electric field 1

Magnetic field

Photons:

Cavity modes
2 polarizations
w = kc.
Extend to w — oo,
e ~iKT=Wt free space solution
Bose statistics (u = 0).
Energies quantized, Aw(n + %).
Speed of light: c.

2 3wV WV

D(w) = §>< 27m2¢3  m2c3
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Phonons:

elastic (standing) waves

3 polarizations

w = kc,exact for low k
Bounded: N values of k.

g ik-F-wt [or sin(l_é - 7) sin(wt)]
Bose statistics (u = 0).

Energies quantized, Aw(n + %).
Speed of sound: ¢




Phonons vs Photons we also saw before:

Liquids and non-crystal solids: have similar modes.

Einstein: 1ndependent 3D oscillators, same w,,.

Debve: Phonons are normal modes in a connected harmonic lattice.

Debye-theory solutions identical to sound waves , w = kc (exact in low-
frequency limit); also map onto blackbody-radiation photons.

Except: mode counting
requires finite number of phonon
modes, and 3 polarizations, not 2.

Photons
1.1 11 o |
(bTackoboay
1 e xad1ation).
0.8
Debye
| i’
0.6 i eeemeaaa- Binstein
= i l'
™ v
L "
0.4 1
L T
'
4
L '
o2 [
- f
L
- I
- U
0 1 ] 3 | PSR T ]
0.3 0.6 0.9 1.2 1.5
T/ Ty




