Notes for today

Reminder, web address: rossgroup.tamu.edu/408page.html
Has HW, syllabus, slides posted.

Reading: starting ch. 15. Today we will discuss the
probabilities going into problems 4 and 5.

I am still looking for a volunteer for problems 5 and 6.

Lecture recordings etc.: Reminder again that you should let
me know 1f you have a Covid quarantine (or other University
excuse). I can share lecture recording or a zoom link to view
the lecture 1n real time. I am still experimenting with various
improvements for the zoom recording.



Recall: Ideal gas

3
U= > NkgT. Energy (1deal gas specific case)

PV=NkgT. Equation of state (ideal gas specific case.

vs General Relationships (for all systems, but recall these
are for controlled processes):

dU = TdS — PdV + udN

s = Laqu +oav - Lan
T T T

S=S(U,V,N)or U=U(S,V,N) [fundamental equation]

With T = (a—U) etc.= complete model of behavior.
dS VN



Entropy define: | S = kgin(Q) (Boltzmann)

¢ Fundamental assumption of statistical mechanics

¢ As before we assume equilibrium; then Q) = multiplicity,
defined as number of accessible states (e.g. # of states at a
given total energy, spatially accessible by particles in container
volume, without violating known N, etc.)

% Classically states counted by “phase space bins” d°» d’p; in
QM () counts number of eigenstates. Terminology —
microstate. locally defined state (all quantum numbers)
macrostate: specified by macroscopic parameters.

*» Note, QM superposition is not the same thing, this is a
“mixed state”.

W1 + P, vs. Py + e'PyY,: phase is random/rapidly
changing: incoherent sum

¢ Extensive property: can see from definition.



Entropy define: | S = kgin(Q) (Boltzmann)

¢ Fundamental assumption of statistical mechanics

¢ As before we assume equilibrium; then Q) = multiplicity,

defined as number of accessible states (e.g. # of states at a
given total energy, spatially accessible by particles in container
volume, without violating known N, etc.)

Fundamental Postulate of Statistical Mechanics:
Over time an isolated system in equilibrium will be found in
each accessible microstate with equal probability.

Ergodic hypothesis invoked here: all states that can be visited
will be visited. Difficult to justify in detail; possibly not needed
when very large numbers of states are involved.



Second Law of Thermodynamics:

Spontaneous processes always tend toward a macrostate with
the largest number of accessible microstates; e.g. spontaneous
processes have AS = 0 (total entropy for all interacting systems,
increases overall entropy of everything — 1solated system, or
“entropy of universe”)

» Separate law of nature based on observed behavior, not derived
from physics of microscopic behavior.

« Examples include free expansion; over-writing great novel on
your laptop by random bits; mixing sugar and salt.



Probabilities and multiple events:

probability of n events occurring in N turns:
_ N!
P = (pevent)n (pno—event)N nn!(N—n)!

o

* # permutations = multiplicity (), for a single type of
process (or for identical particles occupying multiple
states) [ideal gas in phase space “bins”, “phonon”
vibrational excitations,...]

 More generally, need product of multiplicities (e.g. 2
systems taken together, 2 distinguishable types of
particles, etc.)

 Note 2-state system of ch. 15 is distinguishable.

Example: for sequence of coin flips, what is probability of H-T-T-T
in order?

Probability of 2H & 2T, any order?



Large numbers:

probability of n events occurring in N turns:

_ N!
P = (pevent)n(pno—event)N nn!(N_n)!

N\

For large N equivalent to

Gaussian distribution; relative
299

2: 7028810 width shrinks o 1/VN

1000 !
(500 + n) ! (500 - n) !

1000!
[500 ! 500! ]

Plot[ , {n, -200, 200}, PlotRange -> A'I.l]

See e.g. Reif text.

Il " " n . | " " . " | " " " " L
-200 -100 r 100 200



Binomial distribution, large N:

N
Recall P, .= (Tl1) p"1(1 — p)N ™ normalized probability, n, successes.

Binomial theorem, (p + @)V = X} -, (Tllvl) ptigh—m1

« So: (nl)—p an 0( )p"qu "t = Np easy to show.



Binomial distribution, large N:

N
Recall P, .= (Tl1) p"1(1 — p)N ™ normalized probability, n, successes.

Binomial theorem, (p + @)V = X} -, (Tllvl) ptigh—m1
« So: (ny) = P an 0( )p"qu "t = Np easy to show.

 width of peak: <n12>_p P an O(x)pnqu—m

=p a—p[Np(p + @)V 1]
— Np[Np + q] = (ny)* + Npq



Further note on Binomial distribution, large N:
Multiplicity: sufficient for fixed-energy

N systems (microcanonical ensemble this chapter).
Recall Pn1 - (Tl )p{l(l — p)N ™ normalized probability, n, successes.
1

Probabilities important for distribution of

Binomial theorem, (p + q)V = i\’l possible energies (Canonical ensemble &
1 Boltzmann distribution, ch. 16)

« So: (ny) = P an 0( )p"qu "t = Np easy to show.

« width of peak: (n,?) = p an 0 ( )p"qu—"1
6
=p a—p[Np(p + )" ]

= Np[Np +q] = (n,)*

RMS width < VN

Note also, 4" moment treat in similar way: find ratio of 2" and 4%
moments 1dentical to Gaussian distribution (Bell curve).




Physical examples:

Diffusing atoms randomly located on lattice

o @00 o
MEOC ; ~ 2-state random magnetization problem
[ {elel (Rough equivalent situation for ideal gas
atoms)
oo el If kzT>> AU, larger entropy overwhelmingly
RO favors this configuration
ol Telel e (we will see a more formal way to treat such a fixed
temperature case later)
I Small AU
e (& o |©
o @ | |©
s e s “Low-T state”: Entropy =0
s e e e (e.g. Copper + gold can order this way)



Imbalanced example:

@ N, =300 100 & 300 “bins”

atoms

N, = 100

N =5 N =15

20 total atoms, expected location of atoms?

o= N = ] Maximum
: - 151 951x 15! x 285! -
* independent o il e entropy
configurations: Tk
oz N

[4!x96!xl6!x284!]
o= 5.36974 x 1032

probabilities multiply.
e peak value based on
100! > 300!

maximum () o N[6!x94!xl4!x286!]
- 4.80648 x 1037




