Notes for today

» Homework: due tomorrow at the beginning of class.
= | am still looking for a volunteer for problems 5 and 6.

» Lecture recordings etc.: Reminder again that you should let
me know 1f you have a Covid quarantine (or other University
excuse). I can share lecture recording or a zoom link to view
the lecture 1n real time.

* Enable the microphone



Recall: S =kzin(Q) (Boltzmann)
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Recall: S =kzin(Q) (Boltzmann)

N, = 100 &

atoms

N!
n!(N—-n)!
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* independent configurations:

multiply multiplicities.
e peak value based on
maximum {)

N, =300 100 & 300 “bins”

thermodynamic analysis for large NV:

1 P U
ds = —dU + —dV
T T T

: 2 aS

Extremum for S: equalize —— = —

ani

General conditions, T; =T, & uy = pj,
(chapter 2)

Can use Stirling approximation,
InN!'==NInN — N..

nq this
Find, / N4 / N,  situation



Einstein oscillator problem:

Vibrational energy for
solid as a whole:

Omitted zero-point
U= qhwo energy (redefine
zero of energy)

Solid contains g = total number
of quanta of oscillation

>> Many equivalent ways to
distribute this energy <<

U=hw,(n+ %) each atom

e Actual solid: bonds connect atoms,
normal vibrational modes cover range of
oscillation frequencies, determine
vibrational energy & entropy.

e Einstein simplified model: Each atom acts
as a 3D oscillator, with same frequency
each site. With quantized oscillator
energies, correctly models low-T downturn;
qualitatively correct.

e Other crystal excitations may also
contribute to entropy (e.g. conduction
electrons in a metal) but vibrations are
often the largest contribution



Einstein oscillator problem:

Vibrational energy for
solid as a whole:

U =qghw,

N atoms

“trick” for solving:
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— N
one vibrational ¢ quanta in
mode 3N “boxes”
3N modes

for 3D case



Einstein oscillator problem:

Vibrational energy for
solid as a whole:

U= qha)o N atoms
A IR
binomial with ¢ quanta, 3N . , \
oscillators: one vibrational g quanta
__ (3N+g-1)! mode
— ()'(3N-1)!

3N modes
& S = kBln(Q) for 3D case



Einstein oscillator problem:

binomial with g quanta, 3NV

oscillators:
__ (3N+qg-1)!

~ (@!(3N-1)!

N atoms
U/hw,

Find, S = kg [3N1n(1+ L) +gln(1+ %)]

1 kg | (1+3N)
T hw, q




Einstein oscillator problem:

binomial with g quanta, 3NV

oscillators:
__ (3N+qg-1)!

~ (@!(3N-1)!

N atoms
U/hw,

Find, S = kg [3N1n(1+ L) +gln(1 +%)]
l= il ln(1+3—N)
T ho, q
<=

3Nhw,
~ Shwo/kpT _ {




Einstein oscillator problem:

binomial with g quanta, 3NV

oscillators:
__ (3N+qg-1)!
~ (!(3BN-1)!
3SNhw, -
U= FaoolkeT — 1 = 3NhAw,(n) =

“Bose-Einstein distribution for
undermined particle number”
(with particles = quanta = “phonons”)

U~e~@o/kBT |ow-T (activated form)

—>
U =3NkgT high-T (correct classical limit)

Equipartition theorem




Einstein oscillator problem:

3Nhw,

U= ehwo/kBT —1

= 3Nhw,(n)

U~e 1@o/kBT 1ow.-T

—
U =3NkgT high-T

 Correct classical limit helps
validate the choice, S = kgin(Q)

* Actually, vibrational normal modes
have different frequencies, not all
1dentical (low-T details not correct)

 In high T limit, magnitude of Aw,
becomes irrelevant, result is exact.



